Inhibition of Apoptosis Signal–Regulating Kinase 1 Reduces Myocardial Ischemia–Reperfusion Injury in the Mouse

نویسندگان

  • Stefano Toldo
  • David G. Breckenridge
  • Eleonora Mezzaroma
  • Benjamin W. Tassell
  • John Shryock
  • Harsha Kannan
  • Dillon Phan
  • Grant Budas
  • Daniela Farkas
  • Edward Lesnefsky
  • Norbert Voelkel
  • Antonio Abbate
چکیده

BACKGROUND Despite the clear advantages of reperfusion in acute myocardial infarction, part of the myocardium is injured during reperfusion by reactive oxygen species. Reactive oxygen species activate apoptosis signal-regulating kinase-1, a key mediator in cell death. We hypothesized that inhibition of apoptosis signal-regulating kinase-1 at the time of reperfusion would protect the heart from ischemia-reperfusion injury. METHODS AND RESULTS Male CD1 mice underwent transient coronary artery ligation (30 minutes) followed by reperfusion or underwent sham surgery (n=10 to 12 per group). A selective small-molecule inhibitor of apoptosis signal-regulating kinase-1 (GS-459679) was given immediately after reperfusion (10 or 30 mg/kg IP). Infarct size was measured early (at 24 hours, in a subgroup of mice) by triphenyl tetrazolium chloride staining and late (at 7 days) by Masson's trichrome staining for fibrosis. Apoptosis was assessed by measurement of caspase-3 activity and by determination of DNA fragmentation in cardiomyocytes bordering the infarct. Transthoracic echocardiography was performed before surgery and then at 24 hours and 7 days later. Treatment with GS-459679 at reperfusion led to a significant dose-related reduction in infarct size (31% for 10 mg/kg [P<0.001 versus vehicle] and 60% for 30 mg/kg [P<0.001 versus vehicle]), inhibition of apoptotic cell death, and preservation of left ventricular dimension and systolic function at both 24 hours and 7 days. CONCLUSIONS Inhibition of apoptosis signal-regulating kinase-1 at the time of reperfusion limits infarct size and preserves left ventricular function in a model of acute myocardial infarction in the mouse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-78: Role of Allopurinol, as An Antioxidant Factor, in Increasing The Number of Received Oocytes and Embryos, and Reduce Apoptosis after Heterotopic Transplantation Mouse Ovarian Tissue

Background: Ischemia and reperfusion after transplantation is the main problem which decreases follicular density in the grafted ovarian. Many sources of free radicals such as xanthine oxidase were generated during ischemia. In this study, we used allopurinol as xanthine oxidase inhibitor to reduce ischemia-reperfusion injury, to increase received oocytes and embryos, and to decrease Apoptosis ...

متن کامل

Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways

Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-rep...

متن کامل

Pioglitazone alleviates oxygen and glucose deprivation-induced injury by up-regulation of miR-454 in H9c2 cells

Objective(s): Pioglitazone, an anti-diabetic agent, has been widely used to treat type II diabetes. However, the effect of pioglitazone on myocardial ischemia reperfusion injury (MIRI) is still unclear. Herein, the objective of this study is to learn about the regulation and mechanism of pioglitazone effects on oxygen glucose deprivation (OGD)-induced myocardial cell injury.Materials and Method...

متن کامل

The Protective Role of Interleukin-33 in Myocardial Ischemia and Reperfusion Is Associated with Decreased HMGB1 Expression and Up-Regulation of the P38 MAPK Signaling Pathway

Interleukin-33 (IL-33) plays a protective role in myocardial ischemia and reperfusion (I/R) injury, but the underlying mechanism was not fully elucidated. The present study was designed to investigate whether IL-33 protects against myocardial I/R injury by regulating both P38 mitogen-activated-protein kinase (P38 MAPK), which is involved in one of the downstream signaling pathways of IL-33, and...

متن کامل

Inhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats

Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2012